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Abstract
This paper examines classical privacy amplification using a universal family of
hash functions. In quantum key distribution, the adversary’s measurement can
wait until the choice of hash functions is announced, and so the adversary’s
information may depend on the choice. Therefore the existing result on classical
privacy amplification, which assumes the independence of the choice from the
other random variables, is not applicable to this case. This paper provides a
security proof of privacy amplification which is valid even when the adversary’s
information may depend on the choice of hash functions. The compression
rate of the proposed privacy amplification can be taken to be the same as that
of the existing one with an exponentially small loss in secrecy of a final key.

PACS numbers: 89.70.+c, 03.67.Dd

Quantum key distribution [1, 2] allows two parties, say Alice and Bob, to share a secret
key (random number) in the presence of an adversary, say Eve, with unlimited resources for
computation. To make quantum key distribution secure, Alice and Bob have to distill highly
secret shared information (final key) from only partially secret shared information (raw key).
The art of this distillation is called privacy amplification. Remember here that the Shannon
entropy is a measure of uncertainty of a random variable and takes its maximum if and only
if the random variable has a uniform distribution (see e.g. [5]). Therefore, the standard way
to prove the security of privacy amplification is to show that the Shannon entropy of the final
key conditioned on Eve’s information is maximal except for a small loss.

To perform privacy amplification, it is necessary to estimate Eve’s information about a
raw key and then compress it with a rate determined by the estimation. Now, to illustrate a
simple example of privacy amplification, let us consider the following situation: Alice and
Bob share two random bits r1r2 ∈R {0, 1}2 and they estimate that Eve knows only one bit e
of the shared two bits (i.e. e = r1 or e = r2), where the estimation succeeds with probability
1 − ε. They choose a function g which compresses the raw key r1r2 to generate a final key
g(r1r2). Here, to agree on which function is to be used, they communicate with each other
through an authenticated public channel, which is accessible to all parties including Eve. Now,
let g be the function which takes two bits as input and outputs the exclusive OR (XOR) of the
input two bits (i.e. g(b1b2) = b1 ⊕b2 for b1, b2 ∈ {0, 1}). Then it is easy to see that the privacy
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amplification using g to compress a raw key r1r2 is secure when ε is negligible. In fact, we
can show that the Shannon entropy H(g(r1r2)|e, g) of the finale key g(r1r2) conditioned on
Eve’s information e and g is lower bounded by 1 − ε.

In proving the security of quantum key distribution, it is conventional to apply privacy
amplification using a family of linear codes for the compression (see e.g. [6, 9]). Instead, in
this paper, we consider privacy amplification using a universal family of hash functions [4]. It
should be noted that the universal families of hash functions are strictly lager than the families
of linear codes. In fact, there are families in the former which are more efficient than all in the
latter [4, 10].

Privacy amplification using a universal family of hash functions has already been
investigated in detail by Bennett et al [3]. They proved the security of privacy amplification
in which the Rényi entropy of a raw key given Eve’s information is used to determine the
compression rate. However, this result is not applicable to proving the security of quantum
key distribution. This is because in the security proof of [3], Eve’s information is assumed to
be independent of the choice of hash functions, while in the actual situation of quantum key
distribution, Eve’s measurement can wait until the choice of hash functions is announced and
so Eve’s information (extracted by her measurement) may depend on the choice. To solve
this problem, Renner and König [8] developed privacy amplification which is secure even
when Eve is allowed to keep her information in the form of a quantum state. More precisely,
the privacy amplification does not require Eve to extract classical information by measuring
her quantum state, which is independent of the choice of hash functions, but it allows Eve to
keep her state as quantum information. In this privacy amplification, the compression rate of
hash functions is determined by using the quantum version of the (smooth) Rényi entropy of
a raw key given Eve’s information. Here, we note that the state transformation induced by a
measurement is doubly stochastic (i.e. trace-preserving and unital). Thus, the classical Rényi
entropy of a raw key is lower bounded by the corresponding quantum Rényi entropy (see [7]),
and so the former could give a better compression rate than the latter. Therefore it is of interest
to ask (i) whether or not secure privacy amplification is possible in the classical framework
when Eve’s information may depend on the choice of hash functions, and if possible, then (ii)
how to determine the compression rate of hash functions. The aim of this paper is to answer
these questions.

We begin by providing some definitions and notations which will be used later. Let X and
Y be random variables over finite sets X and Y , respectively. Then the Shannon entropy of
X,H(X), and the (second-order) Rényi entropy of X,R(X), are defined by

H(X) = −
∑
x∈X

Pr[X = x] log2 Pr[X = x], (1)

R(X) = − log2

∑
x∈X

Pr[X = x]2 (2)

respectively, where log2 denotes the logarithm to the base 2. We also use the notation
exp2(x) = 2x . By definition, it can be shown that

H(X) � log2 |X |, (3)

where |X | denotes the number of elements in the range of X, with equality if and only if X
has a uniform distribution over X (see e.g. [5]). The conditional Shannon entropy of X given
Y = y,H(X|Y = y), and the Shannon entropy of X conditioned on Y,H(X|Y ), are defined
by

H(X|Y = y) = −
∑
x∈X

Pr[X = x|Y = y] log2 Pr[X = x|Y = y], (4)
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H(X|Y ) =
∑
y∈Y

Pr[Y = y]H(X|Y = y) (5)

respectively. The conditional Rényi entropies R(X|Y = y) and R(X|Y ) are defined in the
same way.

Let A and B be finite sets and G be a family of functions from A to B. Let G be the
random variable uniformly distributed over G. Then G is called universal if

Pr[G(a0) = G(a1)] � 1

|B| (6)

for every distinct a0, a1 ∈ A [4]. For example, the family of all functions from A to B
is universal. A more useful universal family is that of all linear functions from {0, 1}n to
{0, 1}m [4]. More efficient families, which can be described using O(n + m) bits and have
polynomial-time evaluating algorithms, are discussed in [4, 10].

Having provided definitions and notations, we now consider privacy amplification which
can be applied to quantum key distribution.

Theorem 1. Let X and S be finite sets. Let X be a random variable over X , and G be
the random variable, independent of X, uniformly distributed over a universal family of hash
functions from X to S. Let W be a random variable such that

Pr[R(X|W = w) � λ] � 1 − ε. (7)

Then

H(G(X)|G,W) � (1 − ε) log2
(1 − ε)|S|

1 + δ
� (1 − ε) log2 |S| − δ + ε

ln 2
, (8)

where δ = |S| exp2(−λ).

Here we note that the above theorem does not assume the independence between G
and W.

Proof. We begin with

Pr[G(X) = s|G = g,W = w] =
∑

x

p(x|g,w)δ(g(x) = s) (9)

for every s ∈ S, where p(g, x,w) = Pr[G = g,X = x,W = w] and

δ(g(x) = s) = Pr[g(x) = s|G = g,X = x] =
{

1 if g(x) = s,

0 if g(x) �= s,
(10)

for short. Let X′ be a random variable, independent of X and G, with the same distribution
as X. Then the Shannon entropy of G(X) conditioned on G and W,H(G(X)|G,W), can be
written as

H(G(X)|G,W) = −
∑

s

∑
g,x,w

p(g, x,w)δ(g(x) = s) log2

∑
x ′

p(x ′|w)δ(g(x ′) = s). (11)

It is now convenient to define the event E by

E = [w ∈ {w|R(X|W = w) � λ}]. (12)

Since p(g, x,w) � p(E)p(g, x,w|E) and p(E) � 1 − ε,

H(G(X)|G,W) � −(1 − ε)
∑

s,g,x,w

p(g, x,w|E)δ(g(x) = s) log2

∑
x ′

p(x ′|w)δ(g(x ′) = s).

(13)
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Further, Jensen’s inequality gives

H(G(X)|G,W) � −(1 − ε) log2

∑
s,g,x,x ′,w

p(g, x,w|E)δ(g(x) = s)p(x ′|w)δ(g(x ′) = s)

� −(1 − ε) log2
1

1 − ε

∑
w:E

∑
g,x,x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′)), (14)

where the last step follows from

p(g, x,w|E) = p(g, x,w,E)

p(E)
� p(g, x,w)

1 − ε
. (15)

Now we divide the sum in the last line of (14) into two parts:∑
w:E

∑
g,x,x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′))

=
∑
w:E

∑
g,x,x ′:x=x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′))

+
∑
w:E

∑
g,x,x ′:x �=x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′)). (16)

The first part can be bounded as∑
w:E

∑
g,x,x ′:x=x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′))

=
∑

g,w:E

p(g,w)
∑

x

p(x|w)2

� exp2(−λ). (17)

Also the second part can be bounded as∑
w:E

∑
g,x,x ′:x �=x ′

p(g, x,w)p(x ′|w)δ(g(x) = g(x ′))

=
∑
w:E

∑
g,x,x ′:x �=x ′

p(g, x,w)p(x ′|g, x,w)δ(g(x) = g(x ′))

�
∑
w

∑
g,x,x ′:x �=x ′

p(g, x, x ′, w)δ(g(x) = g(x ′))

=
∑

x,x ′:x �=x ′
p(x, x ′)

∑
g

p(g)δ(g(x) = g(x ′))

� 1

|S| . (18)

Inequality (8) readily follows from the above inequalities, and from

log2(1 + x) � x

ln 2
and −(1 − x) log2(1 − x) � x

ln 2
(19)

for 0 � x � 1 (with the convention 0 log2 0 = 0). This completes the proof. �

As an example of application of this theorem, let us consider the BB84 protocol [2].
In this case, we may take X and W = (Y, Z) so that X represents Alice’s information used
for the key, Y represents Bob’s information resulting from his ‘fictive’ measurement and Z
represents Eve’s information resulting from her measurement. Further, the condition of the
form Pr[R(X|Y = y,Z = z) � λ] � 1 − ε with ε exponentially small can be derived from
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observed errors between Alice’s information used for the test and Bob’s information resulting
from his ‘real’ measurement (for details of Bob’s measurements, see [6]). Here it should be
stated that, in contrast to Shannon entropy, Rényi entropy can increase when it is conditioned
on a random variable. That is, R(X|Y ) > R(X) is possible. This is the reason why an
auxiliary random variable Y is introduced. For a detailed discussion on auxiliary random
variables, see [3].

Let us now estimate the conditional Shannon entropy H(G(X)|G,Z) when Pr[R(X|Y =
y,Z = z) � λ] � 1 − ε. It readily follows from the above theorem that

H(G(X)|G,Z) � H(G(X)|G,Y,Z)

� (1 − ε) log2|S| − δ + ε

ln 2
. (20)

On the other hand, if Z and G are independent, we have

H(G(X)|G,Z) � (1 − ε) log2|S| − δ

ln 2
(21)

for the same parameters as above [3]. By comparing these inequalities, we see that the lower
bound in (20) is smaller than that in (21) by ε/ ln 2, which can be taken exponentially small
in quantum key distribution (see e.g. [6]). This decrease in the lower bound comes from
inequality (15). We now explain this in more detail. In the above proof, it is essential to use
inequality (6), which describes the property of a universal family of hash functions. However,
this inequality requires that G is uniformly distributed over the universal family. If G is
independent of W (and X), then

p(g, x,w|E) = p(g)p(x,w|E), (22)

and thus this requirement is automatically satisfied. However, the above theorem allows W to
depend on G, and so the conditional probability distribution p(g|E) is not uniform in general.
Hence, in the above proof, we use inequality (15) to ensure that G is uniformly distributed in
(18), the last step of which follows from inequality (6). This completes the explanation why
the decrease in the lower bound occurs.

In conclusion, we have examined classical privacy amplification using a universal family
of hash functions. In quantum key distribution, Eve’s measurement can wait until the choice
of hash functions is announced, and so Eve’s information Z may depend on the choice G of
hash functions. Therefore the existing result [3] on privacy amplification is not applicable
to this case. In this paper, we provided a security proof of privacy amplification which is
valid even when Eve’s information Z may depend on the choice G. Since the proposed privacy
amplification is applicable to more general situations than the existing privacy amplification,
it follows that the former cannot exceed the latter in efficiency and security. However, this
disadvantage is negligible; in fact, the compression rate of the former can be taken to be the
same as that of the latter with a negligible (exponentially small) loss of the lower bound on
the conditional Shannon entropy H(G(X)|Z,G).

We close this paper by mentioning a future problem. Let ρ be a quantum state, and X be
a random variable resulting from a measurement on ρ. Since the state transformation induced
by a measurement is doubly stochastic, it follows that

S2(ρ) � R(X), (23)

where S2 denotes the (second-order) quantum Rényi entropy (see [7]). Note here that,
in quantum key distribution, Eve’s state can depend on Alice’s information but Eve’s
measurement cannot; thus the equality in (23) does not hold in general. Therefore privacy
amplification using R can have a better compression rate than that using S2 at least in the
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region of finite length (although they may asymptotically coincide). On the other hand, the
same observation shows that the latter can have stronger security than the former at least in
the region of finite length. Investigating this tradeoff between efficiency and security will be
the subject of future work.
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